A Note to our Readers

The University of Arizona Cancer Center (UACC) is celebrating its 40th anniversary this year, and I have a tremendous amount of gratitude for the generous support that we have received in that time. Your efforts have contributed to significant advances in the fight against cancer, and I am proud to have the opportunity to fight alongside of you. This fall we have gone through the 5-year National Cancer Institute Review for NCI-designation and all signs point to a positive outcome.

In the 18 months that I have served as director of the UACC, we have made tremendous progress. We have appointed accomplished and experienced leaders in several areas. We have developed a strong clinical and scientific organizational structure. We have recruited outstanding physicians and scientists. And we have opened the new clinical facility in downtown Phoenix, the University of Arizona Cancer Center at Dignity St. Joseph’s Hospital and Medical Center.

We will continue to build upon the strong momentum of the past 18 months and pour our efforts into the fight against cancer. We are fighting for the 32,000 Arizonans who will be diagnosed with cancer this year. We are fighting for one out of every three members of our community who will be affected by the disease in their lifetime.

Your support of the University of Arizona Cancer Center is instrumental in providing resources for the best technologies and facilities for our physicians and scientists. Together, we are able to develop novel cancer fighting agents in the laboratory and move them into the clinic to treat real patients. Each and every contribution goes directly to saving lives through treatment and prevention efforts. We are laser-focusing on providing new technologies, including genomic analysis and immunotherapy, to our patients.

I want to thank each of you for making the fight against cancer possible. We are all in this together, and your support is vital to winning that fight.

Sincerely,
Andrew S. Kraft, MD
Director, The University of Arizona Cancer Center
The University of Arizona Health Sciences

On the cover:
UACC scientist, Jessica Martinez, PhD, and student researcher, Ariane Guthrie, study the effects of resveratrol as part of an effort to prevent breast cancer.

The University of Arizona Cancer Center is a Comprehensive Cancer Center designated by the National Cancer Institute. The primary responsibility of an NCI-designated Comprehensive Cancer Center is to conduct research that will lead to the reduction of cancer morbidity and mortality.

Produced by the UACC Office of Communications and Public Affairs
Director – Cody Cassidy
Design – Roma Krebs, UAHS Biomedical Communications
Contributors – Darci Slaten, Nick Prevenas, Chris Nordensson, Gerri Kelly

The media is welcome to quote from this publication and is asked to provide credit. Correspondence or inquiries should be addressed to:
The University of Arizona Cancer Center Office of Public Affairs
1515 N. Campbell Ave.
PO Box 245024
Tucson, AZ 85724-5024
email: uacc@uacc.arizona.edu
All contents © 2016 Arizona Board of Regents
The University of Arizona is an EEO/AA – M/W/D/V Employer
uacc.arizona.edu
Junior faculty member, Jessica Martinez, PhD, at the University of Arizona Cancer Center, is a rising star in cancer research. Ariane Guthrie is a University of Arizona Honors College student and a promising young scientist who was recently accepted to the UA Pharmacy Program.

The two are working together to find a way to help prevent breast cancer by studying the effects of resveratrol on human enzymes and metabolites that are part of pathways related to cancer prevention. Resveratrol is a polyphenol found in grapes and peanuts that has been attributed to a variety of health benefits, including cancer prevention.

More than two-thirds of American adults are overweight or obese, and one-third of all breast cancer diagnoses may be related to these issues, Dr. Martinez said. Increased body weight is associated with clinical factors such as insulin resistance, chronic inflammation and increased circulating sex hormones, all of which contribute to the initiation and progression of obesity-related cancers, including breast cancer.

“Despite some success in public health efforts to promote diet and exercise, there is a continued increase in the number of overweight and obese Americans,” Dr. Martinez said.

“The identification of chemoprevention agents that target the metabolic deregulation associated with overweight issues and obesity will hopefully have a larger impact on lowering cancer burden than weight loss programs alone.”

Previous resveratrol studies have shown metabolic deregulation in animal models but human trials have been limited. “Resveratrol’s effect in humans is not well-characterized,” Dr. Martinez said. “If we can get a systemic picture of what’s going on in an individual, then we can learn which pathways resveratrol targets in a person.”

Guthrie hopes to identify which metabolites are altered by resveratrol, and how that process works, through metabolomics analysis, which is an analysis of the set of molecular chemicals from a biological sample.

“By having a snapshot of an individual’s responses to resveratrol, we can identify how metabolites are altered,” Guthrie said. “Recognizing shifts in one’s metabolomics profile can help us understand how resveratrol is acting in the human body and how this action might reduce the risk for breast cancer.”

A greater understanding of which metabolites are affected by resveratrol potentially could lead to preventing breast cancer in some patients through resveratrol supplementation, which is extremely important. “This is why identifying preventative strategies, such as resveratrol supplementation, is so critical,” Guthrie says.

There is another reason why identifying a preventive measure for breast cancer is important. “The treatment for breast cancer, or any cancer for that matter, is brutal,” Guthrie says.

One in eight women will be diagnosed with breast cancer, and because it is so far-reaching, chances are that you or someone you know has been affected by the disease. “Breast cancer is a highly preventable disease, yet there are over 230,000 new cases each year,” Dr. Martinez says. “If we can implement prevention strategies, we can make a huge impact for women in the future.”

This research is just one step toward a medical breakthrough, but it is a significant step. Knowing exactly how the metabolome is affected by resveratrol will lead to more effective measures in the future.

“If resveratrol’s targets are not elucidated, we cannot know exactly how this compound is acting in our bodies,” Guthrie said. “This research could be a major step forward toward understanding those targets.”

Junior faculty member and Honors College student are setting their sights on antioxidant to target breast cancer

#WeWillWinThisFight
Once you understand how something works, the next step is to figure out how to keep it working. That is precisely the goal of Donato Romagnolo, PhD, and Ornella Selmin, PhD, of the University of Arizona Cancer Center.

Knowing that the BRCA1 gene functions as a tumor suppressor, Romagnolo and Selmin are working on a way to keep the gene from being repressed through epigenetic changes caused by environmental factors.

Roughly 5 to 10 percent of breast cancer diagnoses are a direct result of an inherited mutation on the BRCA1/BRCA2 genes. But what is causing the other 90 percent?

The researchers have identified the aryl hydrocarbon receptor, or AhR, as a nuclear factor that represses BRCA1 expression when it encounters ubiquitous environmental pollutants, metabolites of certain dietary fats, or prolonged exposure to ultraviolet rays as a common link in non-inherited breast cancer cases.

“We’re still not sure if AhR is the cause or the effect — whether it’s driving the lower BRCA1 expression, or if it’s simply a passenger in a larger, more complex series of events,” Romagnolo said. “But we do know AhR is involved and its activation is repressive of BRCA1 expression in breast epithelial cells.”

Romagnolo and Selmin are among the few researchers investigating this potential link. Research funded by the Department of Defense Breast Cancer Research Program, along with the Arizona Biomedical Research Commission and the Soy Health Research Program, is allowing Romagnolo and Selmin to explore dietary compounds found in soy as a possible factor that can keep the activated AhR receptor from inhibiting the BRCA1 tumor suppressor gene.

This has the potential for broad and far-reaching implications. Soy foods are consumed extensively in the U.S. According to the Soy Foods Association of North America, 31 percent of Americans incorporate soy into their weekly diet, a 7 percent increase from 2010. U.S. consumers are spending more on soy products; the retail soy foods industry generated a total of $4.5 billion in revenue in 2013, up nearly 25 percent from the 1990s.

Soy consumption may be associated with reduced risk of breast cancer incidence, recurrence and mortality. But concerns remain about the timing and dose of exposure.

Romagnolo and Selmin are expanding on their investigation of a potentially groundbreaking genetic marker that could lead to more targeted therapies for previously untreatable breast cancer cases. This investigation specifically addresses the question of breast cancer susceptibility in women who have no family history of breast cancer.

The ultimate goal of this study is to determine whether AhR and its target genes can serve as a diagnostic marker to develop preventive models and new targeted therapies for estrogen receptor negative (and possibly triple-negative) breast cancers, providing safer, more effective treatments for a disease that claims more than 40,000 lives each year.

Last year, Romagnolo and Selmin published a paper in the journal Molecular Carcinogenesis suggesting that exposure to these external environmental and dietary factors during gestation may have an impact on subsequent breast cancer risk for the offspring as well.

The Romagnolo-Selmin study will test in an animal model how timing of exposure during gestation and genetic background influence mammary cancer risk in the female offspring. This may afford new insight into the transgenerational effects of soy intake on breast cancer risk and the refining of dietary recommendations for breast cancer prevention.

The BRCA1/BRCA2 mutation links to breast cancer made headlines worldwide when actress Angelina Jolie wrote about her experiences with her inherited genetic condition in 2013. Yet one thing nearly all breast cancer cases have in common is reduced expression in these genes, even if there is no inherited mutation or familial history with breast cancer.

The support comes from the Department of Defense’s $34 million breast cancer funding mechanism called “Breakthrough Award — Funding Level 2.” Romagnolo and Selmin are the principal investigators on one of the 16 programs out of 227 applications submitted through this funding mechanism.

Romagnolo and Selmin hold faculty appointments in the Department of Nutritional Sciences in the College of Agriculture and Life Sciences and share a laboratory at the Cancer Center. They have a long history of funding. Each arrived at the Cancer Center in 1997 and began researching the links between AhR and breast cancer with their first successfully funded grant in 1999 through the Department of Defense. The DOD established the Breast Cancer Research Program in 1992 to promote innovative research focused on eradicating breast cancer.

In 2014, their research received the highly sought-after Idea Expansion Award — a three-year, $560,000 grant to assist Romagnolo’s lab with setting up protocols and genetic models for the next phase of this study. Recently, the DOD included these findings as one of the BRCA1 research milestones.

“We know the BRCA1 gene’s blueprint, and we know some of the risk factors. The next step is to turn these findings into life-saving therapies,” Romagnolo said.
Phoenicians Charlie and Barbara Young had eagerly anticipated this day for years: Thursday, August 13, 2015. On this sweltering summer day in downtown Phoenix, the Youngs attended the ribbon-cutting ceremony that officially opened The University of Arizona Cancer Center at Dignity Health St. Joseph’s Hospital and Medical Center.

“This day was a dream come true,” said Barbara. “The ceremony was exciting and rewarding,” said Charlie.

Charlie and Barbara have generously supported the UA Cancer Center (UACC) since 1999 and have actively served on its advisory board since 2000.

“Their gifts have truly been transformational,” said Andrew S. Kraft, MD, director of the UA Cancer Center. “Having the Center in Phoenix enables us to expand our research and increase our evidence-based, exemplary patient care. We could not have accomplished this without the support of major donors like the Youngs.”

“When we began supporting the UA Cancer Center, we started with research, because it’s the key to improving cancer treatment and discovering cures,” said Charlie. “And as business people, we understand that research needs money. A lot of it.”

As the idea to build a UA Cancer Center in Phoenix took root and began to slowly grow over the years, the Youngs shifted their support to this new endeavor. “We wanted our donations to support whatever was needed most,” said Barbara, who had for years advocated for a UA Cancer Center to be established in Phoenix.

BACKGROUND

Charlie was born in Columbia, Missouri. He attended the University of Missouri and earned a B.S. in business and public administration. He then went to the University of Washington and attended its Graduate School of Banking. Throughout his career, Charlie worked in banking, farming and ranching. In 1961, he moved to Arizona.

Barbara was born in Phoenix and graduated from West High School. She attended Colorado College and received a B.S. in Psychology and Elementary Education. During her career, Barbara worked in education, insurance, ranching, farming and investment.

The Youngs married in 1973. They have four children and nine grandchildren. “Two of our children graduated from the UA, so we have strong ties to Tucson and the university,” said Charlie.

And both have been profoundly affected by cancer.

Barbara is a cancer survivor. She successfully battled breast cancer and melanoma and has been cancer-free for about 18 years. “My mother struggled for years from more than one kind of cancer and survived. But my grandmother passed away in her early 60s from breast cancer. It was devastating.”

Charlie’s parents died from cancer as well. His father passed away from lung cancer and his mother from esophageal cancer. The memories are painful. “It was utterly devastating to watch them die from this disease.”

BEGINNINGS

While Barbara was being treated by private practice oncologist (and UA College of Medicine – Tucson alumni) Albert G. Wendt, MD, and his team, she started exploring cancer facilities in Arizona. She found the UA Cancer Center—the only National Cancer Institute-designated comprehensive cancer center headquartered in Arizona.

Barbara and Charlie came to Tucson and met with then center director (1999-2003), Daniel Von Hoff, MD, FACP. Barbara expressed a desire to see a NCI-designated cancer center in Phoenix, and the seeds were planted to someday establish a facility there.

In 2000, the Youngs were invited to be on the advisory board of the UA Cancer Center. “We’ve been actively involved ever since, and have worked hard to get the Center built in Phoenix,” said Barbara.

For information about naming opportunities at the University of Arizona Cancer Center, please call (520) 626-5752 or (877) 518-4638, or email give@uahs.arizona.edu.

(continued on page 9)
Therapeutic Development Program (TDP)

The scientific goal of the Therapeutic Development Program (TDP) is to develop strategies that can be used to expand available therapeutic options and/or lead to enhanced efficacy of existing therapeutics.

The Program leverages basic research expertise in the study of molecular pathways that mediate cancer growth, including specialized capabilities in target discovery, molecular modeling, and chemical synthesis with analogue development, refinement of novel molecule-based therapeutics, and extensive analysis of predictive biomarkers.

Program activities are organized under three major themes: 1) Chemically synthesize and biologically characterize novel anti-cancer agents, 2) Elucidate unique biologic targets for new chemotherapy agents, and 3) Translate laboratory findings into clinical trials.

In the past 6 years, the Program has initiated and participated in 36 interventional trials. Currently, 19 interventional investigator-initiated trials (IITs) are open and recruiting patients at the UACC. The capabilities of the TDP have been expanded greatly by the recent expansion of the UACC-affiliated clinical facilities in Tucson and Phoenix, the strategic recruitment of 13 clinicians and researchers, and its inclusive training and mentoring environment.

TDP Members focus on targets and precision medicine approaches of potential relevance to clinical cancer applications with an emphasis on the cancer burden in southern Arizona, including skin, breast, lymphoma, and gastrointestinal cancers. The significance of the Program is indicated by publication in very high impact journals (4 NEJM, 3 Nature, 1 Nature Genetics, 4 PNAS, 2 Lancet, 4 Lancet Oncology, and 1 J Invest Dermatol); its entry of 3 new first-in-the-field drugs into Phase II studies and commercial development; and its introduction of several new diagnostic/prognostic technologies into national validation trials, one of which is now marketed.

Currently, the Program has 51 Members representing 19 different departments at the University of Arizona.

Cancer Imaging Program (CIP)

The scientific goal of the Cancer Imaging Program (CIP) is to develop and apply imaging technologies and imaging methods for cancer prevention and intervention studies. Members of the CIP are working at the forefront of the field and have been eminently successful in utilizing the theoretical underpinnings of imaging science to advance new imaging technologies for a wide array of critical cancer applications.

Program activities are organized under three major themes: 1) Advancement of major biomedical imaging technologies for cancer; 2) Molecular imaging and the development of advanced contrast agents, including analysis of their mechanisms; and 3) Advancement of theoretical image science related to cancer.

The CIP provides a dynamic cancer-focused environment that fosters inter-programmatic collaborations with a robust translational pipeline that facilitates entry of research applications into investigator-initiated clinical trials (IITs).

CIP has two specific aims: 1) To promote advances in imaging science and technology and their application in the context of cancer biology, early cancer detection, development and monitoring of cancer therapies, and cancer prevention studies; and 2) To promote translation of the science into clinical trials and development and testing of new technologies in the clinic through investigator-initiated clinical trials (IITs) and coordinated validation at other clinical sites.

CIP leadership, in cooperation with the UACC and University of Arizona (UA) leadership, is instrumental in securing sources for pilot funding for prototype testing/development and in providing access to unique laboratory and clinical methodologies to aid researchers who are involved in the discovery and development of new diagnostic methods and new anticancer therapies.

The CIP builds on the UA’s excellence in imaging science. The CIP has 32 Members from 10 different departments with complementary, specialized skills drawn from multiple colleges across the UA. Joint appointments in multiple departments and membership in Graduate Interdisciplinary Programs provide the dynamic networks of interaction required for highly innovative research. The effective integration of the diverse Membership into cancer imaging research, combined with funded mentoring and training programs, have resulted in the sustained, broad-based development of novel approaches to cancer diagnosis/therapy and significant high-impact contributions.
Cancer Biology Program (CBP)

The scientific goal of the Cancer Biology Program (CBP) is to identify etiologic mechanisms underlying cancer development and progression. As the main basic science of cancer platform for the University of Arizona Cancer Center, the Cancer Biology Program seeks to advance fundamental knowledge of the complex biological networks that are deranged in cancer and to characterize interactions between these complex biological networks and the environment that promote carcinogenesis and tumor progression.

The program is organized into three major themes: 1) Genomic instability and epigenetic control of gene expression; 2) Signaling networks in carcinogenesis and tumor progression; and 3) Invasion and metastasis.

CBP has four specific aims: 1) To investigate mechanisms of cancer initiation and progression and to characterize cellular mechanisms that control cancer metastasis; 2) To identify networks and regulatory pathways as potential markers or targets in prevention and treatment; 3) To promote intra- and inter-programmatic collaborations to enhance translational research along the continuum from pre-clinical mouse models and human tissue correlates to clinical trials; and 4) To foster research directions of particular relevance to individuals in Arizona and the Southwest.

The CBP has 51 Members representing 21 different departments at the University of Arizona. The CBP has regional impact through its members’ basic research into the carcinogenic mechanisms of arsenicals that are pervasive environmental carcinogens in the Southwest.

Finally, the Program is invested in using modern, high throughput genomic platforms to develop, enhance, and implement precision medicine. The expanding representation of Hispanic Americans in the State’s population impels increased research into cancer health disparities in this population.

Cancer Prevention and Control Program (CPC)

The scientific goal of the Cancer Prevention and Control Program (CPC) is to develop and implement highly interactive, multidisciplinary cancer prevention and control research, training, and outreach that will lead to progressive reductions in cancer incidence, morbidity, and mortality. The CPC fosters high impact, interactive, multidisciplinary and translational science, as well as training and outreach, that serves the catchment area of southern Arizona.

Program activities are organized under three major themes: 1) Cancer epidemiology; 2) Chemoprevention and biomarkers; and 3) Behavioral, psychosocial, and quality of life.

The CPC has three specific aims that are aligned with these themes: 1) To advance cancer prevention knowledge and inform on interventions through epidemiological science focused on biological, environmental, and lifestyle factors as well as gene-environment interactions associated with cancer risk, morbidity, and mortality; 2) To evaluate novel chemoprevention compounds and biomarkers that will impact cancer prevention through focus on pharmaceuticals, nutraceuticals, and vaccines; and 3) To test behavioral, psychosocial, and quality of life targeted interventions with high potential to reduce risk and improve cancer outcomes.

Researchers operationalize their efforts through interdisciplinary teams largely organized by cancer type to integrate cutting-edge research activities across the continuum of cancer prevention and control and to address special populations and cancer burdens in the catchment area.

The Program has 62 Members who span 21 academic departments. The leaders of the Program utilize extensive strategic planning, engaging faculty, students, and Shared Resource Directors to ensure that the Members of the Program have timely access to the resources and scientific approaches needed to advance their research goals.

The ability to achieve the scientific goals of the CPC Program is rooted in the Program’s strong interaction among CPC members and with other UACC Programs as well as its national and international collaborations.
New Faculty 2016

Erik Knudsen, PhD
Associate Director of Basic Sciences
Professor of Medicine

Dr. Knudsen comes to us from UT Southwestern Medical Center and the Simmons Cancer Center. There he held a faculty appointment in the Department of Pathology and served as a member of the Scientific Program Leaders Committee as well as on the Breast Cancer Disease Oriented Team. Dr. Knudsen received his PhD in Biology and completed two postdoctoral fellowships at the University of California, San Diego before joining the University of Cincinnati as an assistant professor in the College of Medicine’s Department of Cell Biology.

Daruka Mahadevan, MD, PhD
Director, Phase I Program
Professor of Medicine

We are excited to welcome back Dr. Daruka Mahadevan to the UACC family! Dr. Mahadevan is a Professor of Medicine and a recognized expert and highly experienced Physician-Scientist in Hematology and Oncology, and currently the Director of Phase I clinical trials and Co-Director of the Therapeutic Development Program at the UA Cancer Center. He received his medical degree from the University of London, England, UK. He is certified by the American Board of Internal Medicine, subspecialty of Medical Oncology.

Jennifer S. Carew, PhD
Associate Professor of Medicine
Co-Director of the Hematologic Malignancy Disease Team

Dr. Carew comes to the University of Arizona from the Cleveland Clinic Taussig Cancer Institute where she worked in the Department of Translational Hematology and Oncology Research. She is an award-winning translational cancer researcher with expertise in experimental cancer therapeutics, mechanisms of cell death and drug resistance, in vitro and in vivo preclinical investigation of developmental cancer therapeutics, Phase I clinical trial design, and clinical trial correlates. Over the tenure of her career, Dr. Carew has developed a track record for strong industry collaborations focused on investigational drugs, strategies to translate preclinical findings into clinical trials, and development of rational correlative studies in support of clinical trials. Dr. Carew holds two U.S. patents for novel anti-cancer agents.

Steffan Todd Nawrocki, PhD
Associate Professor of Medicine
Translational Research Director for Medical Oncology

Dr. Nawrocki joins the University of Arizona Cancer Center from the University of Texas Health Science Center at San Antonio. His most recent positions were Assistant Professor in the Department of Medicine and Director of Preclinical Research for the Institute for Drug Development at the Cancer Therapy and Research Center. Dr. Nawrocki focuses his research on the evaluation of the molecular mechanisms of action of novel experimental cancer therapeutics with an emphasis on targeting protein degradation. His current research interests include investigation of oncolytic reovirus for cancer therapy, enhancing proteasome inhibitor-induced apoptosis, and evaluating the role that autophagy plays during cancer progression and drug resistance. Dr. Nawrocki has been recognized for his work on multiple occasions, including being named a Leukemia & Lymphoma Society Scholar in 2010. He holds a U.S. patent for a novel anti-cancer agent and has been a scientific reviewer for multiple publications, including Molecular Cancer, the Journal of Clinical Investigation, the International Journal of Cancer, and Blood.
In 2009, when the UA Cancer Center was led by David Alberts, MD (center director, 2005-2013), Dignity Health St. Joseph’s Hospital in Phoenix began serious talks with the UACC about collaborating on building a new cancer center. At that time, Thomas D. Brown, MD, was the Center’s COO. “Dr. Brown was very instrumental in getting us involved with the funding of this project,” said Charlie.

In 2010, the UA officially announced plans to build a new center in Phoenix. The UA launched a capital campaign to help fund the multi-million dollar project.

A VISION FULFILLED

Five years later, the UA Cancer Center-Phoenix was completed. “This is a vision fulfilled,” said Barbara. “It’s wonderful that we now have a world-class, NCI-designated facility for cancer patients to receive care right here in Phoenix.”

And Barbara knows. Although she has been declared cancer-free, she still receives regular screenings to ensure the cancer doesn’t return. “I’m so happy that Dr. Wendt is now with the UA Cancer Center in Phoenix,” said Barbara. “My experience there has been wonderful. This is the place to go for state-of-the-art cancer care—in terms of the beautiful facility and the excellent medical staff.”

ABOUT UACC-PHOENIX

The UACC-Phoenix is located on the Phoenix Biomedical Campus, next to the UA College of Medicine – Phoenix, near Fillmore and 7th streets.

One of the country’s most forward-looking cancer centers, the five-story, 220,000-square-foot facility provides comprehensive outpatient cancer care. It features 70 exam rooms, 44 infusion chairs, three endoscopy rooms, and 8 to 9 rooms for minor procedures and clinical research. Additionally there is a supportive care and survivorship area that includes a meditation room, rehabilitation and therapy rooms, space for support groups, a demonstration kitchen, and a boutique that carries specialty items for patients and survivors. The Center also includes the “Dr. Mandira Jalajakshi Healing Garden,” given in loving memory by the Krishna family.

“The new center far exceeded our expectations,” said Charlie. “It was an answer to our hopes and dreams. We are very pleased to have contributed to this important and lifesaving undertaking,” said Barbara.

For the Youngs, their years of hard work, dedication and financial support to make the UA Cancer Center in Phoenix a reality have been well worth it.
Senior Vice President and Associate Vice President of The University of Arizona Health Sciences Lead UA Effort in the White House Precision Medicine Initiative

In his 2015 State of the Union address, President Obama announced the Precision Medicine Initiative (PMI), a bold new research effort to usher in “a new era of medicine that delivers the right treatment at the right time to the right person,” according to the White House. Leading the charge at the UA are UACC Members Joe G.N. “Skip” Garcia, MD, the senior vice president of health sciences, and Yves A. Lussier, MD, associate vice president for health sciences and chief knowledge officer for UAHS. The initiative will pioneer a new model of patient-powered research that promises to accelerate biomedical discoveries and provide clinicians with new tools, knowledge and therapies to select treatments that will work best for individual patients. The PMI will make data shareable between health care providers, researchers, patients and research participants, while protecting patient privacy.

UACC’s Dr. Cynthia Thomson Receives UA Distinguished Outreach Faculty Award for 2016

The award recognizes outstanding faculty whose scholarship-based outreach to the state, nation and the world has demonstrated sustained excellence in the University’s outreach mission.

Cynthia Thomson, PhD, RDN, co-leads the Cancer Prevention and Control program at the UA Cancer Center. Her research and programming efforts are designed to reduce the risk for chronic disease associated with lifestyle behavior choices. Currently, Thomson, along with other UA researchers, leads the largest national study of lifestyle behaviors ever undertaken in ovarian cancer, one of the more lethal cancers diagnosed in women. The LIVES study is designed to test the role of diet and activity in increasing survival after an ovarian cancer diagnosis.

Dr. Thomson serves as director of the Canyon Ranch Center for Prevention and Health Promotion, whose mission is to support a healthier Tucson community. The center has reached thousands of youth with health promotion messaging including outreach through the Health2BMe Summer camp for kids, the Tucson Marathon Family Fitness Festival, and previously through the Healthy Children Arizona school-based education program. She also directs the Arizona Department of Health Services-funded Arizona Smokers’ Helpline, or ASHLine, a direct service program for the public to support smoking cessation and chronic disease risk reduction.

Dr. Thomson has a passion for mentoring having trained many students and young professionals to achieve their professional goals and to serve their communities.
On March 5, 2016, 335 guests joined The Friends of the University of Arizona Cancer Center for the 30th Anniversary Celebration of An Evening with the Friends. The Western-themed fundraising party was held at the Scottsdale Resort at McCormick Ranch.

The event raised nearly $175,000 for cancer research in an evening that included dining, dancing and an extensive silent auction with items from 80 donors around the Valley. A trip for two to the CMA Awards in Nashville sold four times at the live auction, as did a trip for two to the National Rodeo Finals in Las Vegas.

Proceeds from this year’s event will be used to fund early stage clinical trials at the University of Arizona Cancer Center - Phoenix.

Friends of the University of Arizona Cancer Center ‘Give Cancer the Boot’ at An Evening with the Friends

New Supportive Cancer Care Book Edited by UACC Team

Supportive Cancer Care provides a highly coordinated, interdisciplinary model for future clinical cancer supportive care programs in NCI-designated cancer centers and NCI Community Oncology Research Programs. At the same time, it is intended to serve as an up-to-date resource for oncologists and primary care providers that addresses the many aspects of supportive care associated with cancer survivorship. Accordingly, the book covers a wide range of areas and topics, including but not limited to psychosocial oncology, patient and family education, lifestyle change counseling, palliative care, symptom management (e.g., pain control), cancer risk and genetic counseling, financial planning, and patient navigation. Supportive Cancer Care is the first book of its type concerning an integrated approach to supportive cancer care.

#WeWillWinThisFight
With your support, the University of Arizona Cancer Center (UACC) can fund new research initiatives as they emerge and accelerate our ability to prevent, detect, and treat cancer.

Giving to the UACC provides opportunities for discovery, promotes education and enables our scientists and physicians to expand hope. Help us achieve these essential goals by choosing to become a partner. Together we can save and change lives.

For more information, please call (520) 626-5752 or (877) 518-4638, or email give@uahs.arizona.edu.